Kronecker Constants for Finite Subsets of Integers

نویسندگان

  • KATHRYN E. HARE
  • THOMAS RAMSEY
چکیده

A set of integers S is called ε-Kronecker if every function on S of modulus one can be approximated uniformly to within ε by a character. The least such ε is called the ε-Kronecker constant. We transform the problem of calculating ε-Kronecker constants for finite sets of d elements into a geometric optimization problem. Using this approach we can explicitly determine the ε-Kronecker constant for any two element set and deduce a (non-trivial) upper bound for any finite set. Kronecker constants are determined for many classes of three element sets, including all sum sets, product sets and arithmetic progressions. The answers are surprisingly complicated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Modular Reduction and Kronecker Substitution for Small Finite Fields

We present algorithms to perform modular polynomial multiplication or modular dot product efficiently in a single machine word. We pack polynomials into integers and perform several modular operations with machine integer or floating point arithmetic. The modular polynomials are converted into integers using Kronecker substitution (evaluation at a sufficiently large integer). With some control ...

متن کامل

4.1 Euclidean Division

We saw in Lecture 3 how to efficiently multiply integers, and, using Kronecker substitution, how to efficiently multiply polynomials with integer coefficients. This gives us what we need to multiply elements in finite fields, provided that we have a way to reduce the result to our standard representations of Fp ' Z/pZ and Fq ' Fp[x]/(f), using integers in [0, p− 1] and polynomials of degree les...

متن کامل

18.783 Elliptic Curves: Lecture Notes 4

We saw in Lecture 3 how to efficiently multiply integers, and, using Kronecker substitution, how to efficiently multiply polynomials with integer coefficients. This gives us what we need to multiply elements in finite fields, provided that we have a way to reduce the result to our standard representations of Fp ' Z/pZ and Fq ' Fp[x]/(f), using integers in [0, p− 1] and polynomials of degree les...

متن کامل

Complexity of finite field arithmetic

For integers, the parameter n is the bit-length, and for the finite field Fq we let n = log q. In the case of polynomial root-finding, d is the degree of the polynomial and we list bounds on the expected running time since these operations are most efficiently implemented using probabilistic algorithms. In Lecture 3 we addressed the cost of addition and subtraction in both Z and Fq, and the cos...

متن کامل

On products of integers. II

1. Throughout this paper, c 1 , c2 , . . . denote absolute constants ; ko (a, fl, . . .), kr (a, f3, . . .), . . ., xo (a, /3, . . .), . . . denote constants depending only on the parameters a, /l, . . . ; v(n) denotes the number of the prime factors of the positive integer n, counted according to their multiplicity . The number of the elements of a finite set S is denoted by I S I . Let k, n b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011